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Abstract

As many malaria-endemic countries move towards elimination of Plasmodium falciparum,

the most virulent human malaria parasite, effective tools for monitoring malaria epidemiol-

ogy are urgent priorities. P. falciparum population genetic approaches offer promising tools

for understanding transmission and spread of the disease, but a high prevalence of multi-

clone or polygenomic infections can render estimation of even the most basic parameters,

such as allele frequencies, challenging. A previous method, COIL, was developed to esti-

mate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but

relies on monogenomic infections to estimate allele frequencies or requires external allele

frequency data which may not available. Estimates limited to monogenomic infections may

not be representative, however, and when the average COI is high, they can be difficult or

impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous

SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and

Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simulta-

neously estimate allele frequency and COI. This approach was tested via simulations then

applied to SNP data from cross-sectional surveys performed in three Ugandan sites with

varying malaria transmission. We show that THE REAL McCOIL consistently outperforms

COIL on simulated data, particularly when most infections are polygenomic. Using field data

we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in

COI between and within these sites. Surprisingly, for example, we estimated high average

COI in a peri-urban subregion with lower transmission intensity, suggesting that many of
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these cases were imported from surrounding regions with higher transmission intensity.

THE REAL McCOIL therefore provides a robust tool for understanding the molecular epide-

miology of malaria across transmission settings.

Author Summary

Monitoring malaria epidemiology is critical for evaluating the impact of interventions and

designing strategies for control and elimination. Population genetics has been used to

inform malaria epidemiology, but it is limited by the fact that a fundamental metric

needed for most analyses—the frequency of alleles in a population—is difficult to estimate

from blood samples containing more than one genetically distinct parasite (polygenomic

infections). A widely used approach has been to restrict analysis to monogenomic infec-

tions, which may represent a biased subset and potentially ignores a large amount of data.

Therefore, we developed a new analytical approach that uses data from all infections to

simultaneously estimate allele frequency and the number of distinct parasites within each

infection. The method, called THE REALMcCOIL, was evaluated using simulations and

was then applied to data from cross-sectional surveys performed in three regions of

Uganda. Simulations demonstrated accurate performance, and analyses of samples from

Uganda using THE REALMcCOIL revealed epidemiologically relevant differences within

and between the three regions that previous methods could not. THE REALMcCOIL thus

facilitates population genetic analysis when there are polygenomic infections, which are

common in many malaria endemic areas.

This is a PLOS Computational BiologyMethods Paper.

Introduction

Malaria has declined significantly over the past decade, but continues to cause half a million

deaths annually [1]. Calls for elimination have shifted research efforts towards developing new

approaches for transmission reduction, including the identification of source and sink regions

and hotspots that sustain transmission [2–4]. Plasmodium falciparum population genetic tools

are increasingly being used to inform these efforts [5–12] and have been proposed as a means

to establish the direction of parasite flows and to determine elimination status both by identify-

ing the source of imported infections and by establishing that no local transmission is occur-

ring [13–17]. However, in malaria-endemic regions, infections are frequently characterized by

multiple different genotypes (polygenomic infections), which makes interpreting genetic data

challenging. As a result, population genetic analyses of malaria parasites have often been lim-

ited to monogenomic infections, greatly reducing the utility of available data and potentially

introducing biases into results.

Rapid technological developments have led to a proliferation of approaches for characteriz-

ing malaria parasite genomes, each with different implications for cost, suitability for field sam-

ples across a range of transmission settings, and applicability to different research questions

[5,18–23]. Many genotyping approaches are based on a small number of single nucleotide
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polymorphisms (SNPs). SNP data are cheap and straightforward to obtain from commonly

used dried blood spot (DBS) samples, collected in a variety of field settings, and remain the

most common approach for genotyping studies. However, a high prevalence of polygenomic

infections can render estimation of even the most basic parameters from SNP data, such as

population allele frequencies, difficult.

Population allele frequencies are usually estimated from monogenomic infections [6,7,24],

because of the challenge of estimating the true proportion of each lineage from heterozygous

SNP loci resulting from high complexity of infection (COI, the number of clones in an individ-

ual). However, constraining data sets to only monogenomic infections may introduce system-

atic biases because these infections may not be representative. Such constraint also greatly

limits the precision of estimates when the majority of samples are polygenomic. It is common

to use the proportion of heterozygous calls in each individual or the fraction of polygenomic

infections to compare genetic diversity between populations [6,7,16,25–27]. However, the

complexity of infection underlying polygenomic infections can vary dramatically, and the

probability of a particular locus being heterozygous will depend on its allele frequency in the

population. COIL (estimating COI using likelihood), was recently developed to provide a more

quantitative measure of genetic diversity [28], but unless supplied with external allele fre-

quency data, relies on monogenomic infections to estimate allele frequencies and is therefore

problematic when a large fraction of infections are polygenomic. While external allele fre-

quency data can be obtained from parasite population genomic data such as the Pf3K project

(http://www.malariagen.net/projects/pf3k), these estimates are only available in specific loca-

tions, and may exhibit considerable heterogeneity in space and time.

Here we introduce a new Bayesian approach, Turning HEterozygous SNP data into Robust

Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection

using Likelihood (THE REALMcCOIL), to additionally incorporate polygenomic samples,

using Markov chain Monte Carlo methods to simultaneously estimate allele frequency and

COI. We tested two versions of our method on a series of simulations and then applied it to

data on 105 SNP loci in 868 samples from cross-sectional surveys in three regions of varying

endemicity in Uganda [29–31]. The allele frequencies estimated by our new approach were

used to calculate FST [32], a measure of genetic differentiation between sites, and FWS [33], a

measure of the within-host genetic diversity. These results demonstrate the utility of THE
REALMcCOIL to obtain accurate estimates of COI and allele frequency from SNP data, which

can be used to characterize genetic diversity and perform population genetic analyses of para-

site populations even in very high transmission settings.

Materials and methods

Ethics statement

The cross sectional survey was approved by IRBs at the University of California, San Francisco

(#11–07138) and SOMREC at Makerere University, Uganda (#2011–203).

Methods to estimate population allele frequency and complexity of

infection

We developed a Markov chain Monte Carlo (MCMC) method to simultaneously estimate pop-

ulation allele frequency for each SNP and COI for each individual. Since estimating COI and

allele frequencies are highly related to each other, our approach explored the uncertainty of

both at the same time, and by doing so, incorporated information from polygenomic infec-

tions. Assuming there are n individuals and k loci, the parameters to be estimated include

Concurrent estimation of the complexity of infection and allele frequency
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complexity of infection for each individual (M = [m1,m2, . . .,mn]) and population allele fre-

quency for each locus (P = [p1, p2, . . ., pk]). We used the data in two ways: a categorical

method, in which we considered SNP at locus j of individual i, Bij, to be heterozygous or

homozygous (0 [homozygous minor allele], 0.5 [heterozygous], 1 [homozygous major allele]),

and a proportional method, in which the proportion of major allele at locus j of individual i,
Sij, was calculated from the relative signal intensity for each allele (Sij ¼

A1 ij
A1ijþA2ij

, where A1 and

A2 represent the signal intensity of major and minor allele that are obtained from Sequenom

or similar types of SNP assays, respectively [34]). The notations are summarized in Table A in

S1 File. Similar to COIL, THE REALMcCOIL assumed that different loci are independent, that

different samples are independent and polygenomic infections are obtained from multiple

independent infections, and that the samples were collected from a single homogeneous

population.

Categorical method: Modeling heterozygous/homozygous calls. The likelihood of

observing heterozygous/homozygous calls depends on COI, population allele frequency, and

the probability of erroneously calling homozygous loci heterozygous (e1) and conversely call-

ing heterozygous loci homozygous (e2). We have

LðM; PjBOÞ ¼ PðBOjM; PÞ ¼
Yn

i¼1

Yk

j¼1

X

BTij2f0;0:5;1g

PðBOijjBTijÞPðBTijjmi; pjÞ; ð1Þ

where BTij and BOij represent the true and observed heterozygosity at locus j of individual

i (BTij and BOij 2[0, 0.5, 1]). We specify P(BOij|BTij) to take the following form (Table 1),

depending on the values of BTij and BOij:and

PðBTijjmi; pjÞ ¼

pjmi if BTij ¼ 1;

ð1 � pjÞ
mi if BTij ¼ 0;

1 � pjmi � ð1 � pjÞ
mi if BTij ¼ 0:5:

ð2Þ

8
><

>:

We assumed uniform priors forM and P and updated them sequentially using a Metropo-

lis-Hastings algorithm overN = 100,000 iterations, excluding the initial burn-in 1000 iterations

to obtain the posterior distributions ofM and P. If e1 and e2 were not pre-specified, THE REAL
McCOIL estimated their posterior distributions along withM and P. The details of the sam-

pling procedure are described in Text A in S1 File.

Proportional method: Modeling frequency data. The likelihood of obtaining the raw fre-

quency of signals is composed of the observational model (f, the likelihood of observed fre-

quency of signals given true within-host allele frequency) and the likelihood of true within-

Table 1. The observational model for categorical method.

BTij

0 0.5 1

BOij 0 1−e1 e2/2 0

0.5 e1 1−e2 e1

1 0 e2/2 1−e1

doi:10.1371/journal.pcbi.1005348.t001
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host allele frequency (g) as follows:

LðM; PjSOÞ ¼ PðSO jM; PÞ ¼
Yn

i¼1

Yk

j¼1

PðSOij jmi; pjÞ

¼
Yn

i¼1

Yk

j¼1

f ðSOij j STij ¼ 0ÞgðSTij ¼ 0 jmi; pjÞ

þ

ð

0<STij<1

f ðSOij j STijÞgðSTij jmi; pjÞdSTij

þf ðSOij j STij ¼ 1ÞgðSTij ¼ 1 jmi; pjÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð3Þ

where STij and SOij represent the true and observed frequency of major allele at locus j of indi-

vidual i (0� STij, SOij� 1). Consistent with other population genetic approaches [35], we

assumed that each observation SOij was drawn from a normal distribution with the mean

equal to the true frequency STij and variance equal to s2 ¼
εestffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1ij
2þA2ij

2
p , where εest represents the

overall level of measurement error. The variance decreased with the intensity of the signal

(I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1ij

2 þ A2ij
2

p
). To exclude the values outside of [0, 1], we assumed point mass at 0 and

1 and their densities were obtained by integrating values from −1 to 0 and from 1 to1,

respectively.

That is,

f ðSOij j STijÞ ¼

F
� STij

s

� �

if SOij ¼ 0

�
SOij � STij

s

� �

if 0 < SOij < 1

F
STij � 1

s

� �

if SOij ¼ 1

ð4Þ

8
>>>>>>>><

>>>>>>>>:

where F and ϕ are the cumulative distribution function and the probability density function of

the standard normal distribution.

The density of the true within-host frequency was composed of a continuous distribution

and point masses at 0 and 1 as follows:

gðSTij jmi; pjÞ ¼

ð1 � pjÞ
mi if STij ¼ 0

1 � pjmi � ð1 � pjÞ
mi

� �
BetaðSTij ; amipj ; bmipjÞ if 0 < STij < 1

pjmi if STij ¼ 1

ð5Þ

8
>>><

>>>:

where Betaðx; ami ;pj ; bmi ;pjÞ denotes the probability density function of the Beta distribution

evaluated at x. The shape and scale parameters, amipj and bmipj , respectively, depend on the

complexity of infection (mi) and population allele frequency (pj), and were obtained by

fitting the simulated data. We estimated values for amipj and bmipj pre-analysis, using simu-

lated data to fit Beta distributions for a range of values formi and pj. To do this, we simu-

lated the within-host allele frequency distribution for given values ofmi and pj by sampling

a single allele for each infection from a Bernoulli distribution with pj and mixing these

alleles with the relative contributions sampled from a uniform distribution as follows: sam-

pling (mi −1) numbers from a uniform distribution, ordering these numbers to obtain

uð1Þ; uð2Þ; � � � ; uðmi� 1Þ, and mixing alleles using the proportions equal to the difference

Concurrent estimation of the complexity of infection and allele frequency
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between them, uð1Þ � 0; uð2Þ � uð1Þ; � � � ; uðmi� 1Þ � uðmi � 2Þ; 1 � uðmi � 1Þ. Biologically, this means

the proportion of either lineage can be any value between 0 and 1 with equal probability

whenmi = 2. We then fit a Beta distribution to the resulting empirical distribution to obtain

fitted values âmipj and b̂mipj . We performed this for each combination ofm and p, wherem
ranged from 2 to 25 and p ranged from 0.01 to 0.99. As a continuous variable, we rounded

observed values of p to the second decimal point to correspond to our discrete simulation

range, selecting the appropriate amipj and bmipj to calculate the likelihood. Fig A in S1 File

shows some examples of the distribution of simulated within-host allele frequencies with

the fitted Beta distribution given m and p. While the fitted Beta parameters were obtained

by simulating the ratio of mixing from a uniform distribution, the method performed well

when the ratio of mixing was sampled from an exponential distribution, and THE REAL
McCOIL can incorporate any fitted Beta distributions the users provide. We assumed uni-

form priors and updated P,M, ST sequentially using a Metropolis-Hastings algorithm over

N = 100,000 iterations, excluding the initial burn-in 1000 iterations to obtain posterior dis-

tributions of P andM. If εest was not pre-specified, THE REALMcCOIL estimated its poste-

rior distribution along with P andM. The details of sampling procedure are described in

Text A in S1 File.

Simulations

We sampled COI of each individual from a zero-truncated Poisson distribution with mean �m,

and population allele frequency of each locus from a uniform distribution U(0, 1). For each

individual, we independently sampled allele(s) for each locus from Bernoulli (pj). We deter-

mined the relative proportion of different lineages within the host by sampling the proportion

of each infection from a uniform distribution U(0, 1). For comparison, we additionally tried

sampling from a truncated exponential distribution with the rate λ = 1. After obtaining

within-host allele frequency (STij), we drew SOij from a normal distribution with mean = STij
and variance s2 ¼ ε

I, where ε represents the level of measurement error. We sampled the inten-

sity of the signal I for each locus of each individual from the sum of a Poisson distribution with

average �I ¼ 8 and a normal distribution with mean = 0 and variance = 0.25. Simulations were

designed to represent the type of raw data obtained from Sequenom or similar types of SNP

assays, where an intensity value is obtained for each potential allele [34]. If the intensity of sig-

nal was smaller than Imin, we assumed the data were missing. We obtained the intensities of

two alleles, A1 and A2, by A1 ¼ I
SOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SO2þð1� SOÞ
2

p and A2 ¼ I
1� SOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SO2þð1� SOÞ
2

p , and determined heterozy-

gous calls or homozygous calls by the relative intensity of signals of two alleles, which was

characterized by arctan A1

A2

� �
, the angle in polar coordinate system. The SNP was called as het-

erozygous if arctan A1

A2

� �
was within (d1, d2) and homozygous otherwise (Fig B in S1 File). For

simulated data with measurement error ε>0, we used (d1, d2) = (5, 85). For real data, (d1, d2)

was determined by expert review of each locus as described below.

We compared the performance of the categorical and proportional versions of our method

to COIL, assessing the difference in parameter estimates and variation. We simulated viola-

tions of the model assumptions, specifically independence among loci, independence among

parasite lineages within the same host, and a single, homogeneous population. Dependence

among loci was simulated by different proportions of loci (p) that were linked. We simulated

relatedness (r) among lineages within the same host by sampling alleles either from an existing

lineage within the same host (with probability r) or from the population (with probability

(1-r)). We simulated two equally sized subpopulations with either the same or different

Concurrent estimation of the complexity of infection and allele frequency
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average COI and with various levels of difference in allele frequencies and treated them as one

single population to test the robustness of the assumption that the population was well-mixed.

We also simulated missing data and populations with COI up to 20.

Genotyping of field samples

Dried blood spot samples were obtained from representative cross-sectional surveys per-

formed in 2012 and 2013 as part of the East African International Centers of Excellence in

Malaria Research (ICEMR) program. Surveys were performed in each of three sub-counties in

Uganda: Nagongera in Tororo District, Kihihi in Kanungu District, and Walukuba in Jinja

District. Details of these surveys, along with entomological and cohort data from the same

sites have been published [29,31,36,37]. In brief, 200 households from each sub-county were

randomly selected from a census population, and all children and an age-stratified sample of

adults were enrolled from each household. All samples taken from individuals with evidence

of asexual parasitemia by microscopy were selected for Sequenom SNP genotyping, and an

age-stratified subset were also selected for merozoite surface protein 2 (msp2) genotyping. The

Sequenom assay consisted of 128 SNPs selected to be polymorphic and at intermediate/high

frequency in multiple popluations (https://www.malariagen.net/projects/p-falciparum-

community-project). After removing variants with elevated missing rate, we retained 105

SNPs (see S1 Table for SNP data) and three of them are in known drug resistance loci. Samples

were genotyped according to the relative intensity of the two alleles, as previously described

[21]. Genotyping ofmsp2was performed with alleles sized by capillary electrophoresis, as pre-

viously described [38]. The number of unique alleles were called by a single, expert reader,

with allele counts > 5 grouped into a single category due to difficulties in accurately distin-

guishing artifacts from true alleles at high complexities of infection.

Data analysis

After excluding samples with more than 25% missing SNP data and loci with more than 20%

missing data from the analysis, the numbers of individuals included were 462 (71%) [Nagon-

gera], 48 (51%) [Walukuba], and 74 (59%) [Kihihi], and the numbers of loci were 63 (60%)

[Nagongera], 49 (47%) [Walukuba], and 52 (50%) [Kihihi]. After these cutoffs, only the analy-

sis of Nagongera included one drug resistance locus, and others included none. We used a per-

mutation test with N = 10,000 to compare estimated COI between groups because there were

many ties. In the analysis, we assumed that error rates e1 and e2 were both 0.05 and εest = 0.02.

FWS was calculated by (1−HW/HS), whereHW andHS are 2pW(1−pW) and 2pS(1−pS) respec-

tively and pw and ps are within-host allele frequency and population allele frequency respec-

tively [33]. TheHW/HS ratio was estimated by performing linear regression betweenHW and

HSwith fixed intercept = 0.

Results

Simultaneously estimating allele frequencies and the complexity of

infection

We simulated data of 100 SNPs from populations with an average COI of 3, 5 and 7 and sam-

ple size of 100, and compared estimates of COI and allele frequencies using COIL and THE
REALMcCOIL. When average COI was 3, all three methods estimated COI well, although

allele frequency estimates from COILwere less precise than THE REALMcCOIL (mean abso-

lute deviation [MAD] = 0.077 [COIL], 0.019 [THE REALMcCOIL categorical], 0.019 [THE
REALMcCOIL proportional], Mann-Whitney test p-value< 2×10−16) (Fig 1). When average

Concurrent estimation of the complexity of infection and allele frequency
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COI was 5, however, COIL did not estimate COI or allele frequencies accurately (MAD = 1.45

[COI] and 0.15 [allele frequency]), and when COI was 7, it was unable to estimate allele fre-

quencies due to a lack of monogenomic infections. In contrast to COIL, which consistently

underestimated or failed to estimate COI in populations with greater numbers of polygenomic

infections, THE REALMcCOIL estimated both COI and allele frequencies well even when COI

was high (for categorical and proportional methods, respectively: COI = 5, MAD = 0.61, 0.45

[COI] and 0.024, 0.019 [allele frequency]; COI = 7, MAD = 0.86, 0.79 [COI] and 0.025, 0.015

[allele frequency]). Thus, the ability of THE REALMcCOIL to jointly estimate allele frequen-

cies and COI from all available data resulted in considerably improved performance in esti-

mates of both quantities, especially when the average COI was high.

Furthermore, we compared the performance of the categorical and proportional methods

when we included measurement error in simulations of observed within-host allele frequency.

The categorical method modeled measurement error by incorporating the probability of call-

ing homozygous loci heterozygous (e1) and vice versa (e2) in the likelihood equation, and the

proportional method modeled measurement error by assuming that the difference between

true and observed within-host allele frequencies decreased with the intensity of the signals,

and was proportional to the error parameter (εest). Fig C (A)(C) in S1 File shows that measure-

ment error resulted in a systematic bias in estimates of COI. However, this bias was relatively

minor and fairly robust to misspecification of measurement error, especially when the propor-

tional method was used. In addition, allele frequencies were accurately estimated by both

methods (Fig C (B)(E) in S1 File). If parameters for measurement error were not specified,

THE REALMcCOIL fit them as part of the MCMC. Fig C (D)(F) in S1 File shows that the

probability that the 95% credible interval contained the true COI when error parameters were

fitted was higher than those when error parameters were greatly mis-specified.

Fig 1. True vs. estimated values of COI (A) and allele frequencies (B) using COIL and THE REAL McCOIL. Each blue dot represents a

sample. The black bar and the grey box show the median and 25% to 75% quantile. THE REAL McCOIL estimated allele frequencies and

COI better than COIL, especially when the average COI was high and the majority of infections were polygenomic.

doi:10.1371/journal.pcbi.1005348.g001
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Sensitivity analysis

We next simulated specific violations of the model assumptions to test the robustness of our

approach. In particular, we examined the impact of linkage disequilibrium between loci,

genetic relatedness of parasites within an individual host, and relatedness between subsets of

individuals within the overall population (population substructure). When a proportion of loci

(p) were completely linked, COI was slightly overestimated (Fig D in S1 File). When different

lineages in the same host were not independent, COI was underestimated and the level of

underestimation of COI increased with the level of relatedness (r) (Fig E in S1 File). When we

treated two subpopulations as one population, COI was underestimated and the difference

between true and estimated COI increased with the difference in the average of COI and the

difference in allele frequencies between two subpopulations (Fig F in S1 File). Of these three

violations of model assumptions, only a high degree of relatedness between parasites within an

individual host resulted in substantial bias in estimates of COI, and none substantially affected

estimates of population allele frequencies. Genotyping of real samples often results in missing

data; both methods performed well even when 50% of the data were missing (Fig G in S1 File).

Furthermore, we tested how the number of loci influences the performance of estimating COI.

While the probability that 95% credible interval contained the true COI did not change with

the number of loci, the average difference between true and estimated COI decreased (Fig H in

S1 File). THE REALMcCOIL provided unbiased estimates even when COI was very high (e.g.

15–20), despite the uncertainty of the estimates increasing with true COI (Fig I in S1 File).

Complexity of infection and allele frequencies in three regions of Uganda

We next applied THE REALMcCOIL to data on 105 SNPs generated from smear positive indi-

viduals identified in cross-sectional surveys in three regions of Uganda [36,37] and compared

results obtained from THE REALMcCOIL to those using COIL. Both categorical and propor-

tional methods were applied and showed consistent results; for simplicity we therefore present

only results from the categorical method.

Nagongera, Kihihi, and Walukuba have been shown to have transmission intensities varying

by approximately 100 fold, with entomological inoculation rates recently measured at 310, 32,

and 2.8 infectious bites per person year, respectively [29]. Using COIL, the estimated COI was

relatively low, with little difference between the 3 sites (median COI = 2 [Nagongera], 2 [Walu-

kuba], and 1.5 [Kihihi]) (Fig 2A). In contrast, results from THE REALMcCOIL show that the

COI in Nagongera and Walukuba were similar, and much higher than that in Kihihi (median

COI = 5 [Nagongera], 4.5 [Walukuba], and 1 [Kihihi])(Fig 2A, Table B in S1 File and S2 Table).

These differences between sites were not captured by COIL because of its dependence on mono-

genomic infections to obtain estimates of allele frequencies, which were rare in these individu-

als. We also compared our results to COI estimated using another standard method,msp2
typing, which was performed on a subset of the samples (Fig J in S1 File). Unlike THE REAL
McCOIL, however,msp2 typing estimated similar COI in Walukuba and Kihihi (p-value = 0.49)

(Fig 2A).msp2 encodes an antigen that elicits strong antibody responses, and this discrepancy

may be due to complex population structure arising from immune selection. The difference

may also result from the resolution ofmsp2 typing, which is constrained to COI� 5 [39], or the

fact that it is a single marker, rather than a collection of genome-wide markers.

The high COI observed in the lowest transmission site of Walukuba was unexpected but

reflected clear differences in the proportion of heterozygous calls, which was similar between

Nagongera and Walukuba and lower in Kihihi (Fig K in S1 File). The distributions of age and

parasite density were similar between the sites, and thus unlikely to explain these differences

(Fig L and Fig M in S1 File). We calculated FWS, an inverse measure of outcrossing [33,40],

Concurrent estimation of the complexity of infection and allele frequency
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and found that it was significantly negatively associated with our COI estimates (Fig 3; Pear-

son’s correlation test between log(COI) and FWS, ρ = −0.93 [Nagongera], −0.94 [Walukuba],

and −0.95 [Kihihi], p-values< 2.2×10−16 for all). FWS in Nagongera and Walukuba are similar

and lower than that in Kihihi, suggesting that the level of outcrossing is smallest in Kihihi,

which is consistent with the pattern of COI.

We also examined the relationship between COI and epidemiological and geographical fac-

tors within each site. In Nagongera, COI in young children increased with age until peaking at

age 7, and then decreased; sample sizes for the other two sites were too small to estimate trends

(Fig N in S1 File). Interestingly, parasite density was negatively correlated with COI after

adjusting for age (partial correlation r = −0.15 [Nagongera], −0.27 [Walukuba], −0.23 [Kihihi],

p-values = 0.0011 [Nagongera], 0.058 [Walukuba], 0.043 [Kihihi]). This negative association

was most pronounced in those aged 3–10 years in Nagongera (Fig O in S1 File), and may

Fig 2. Estimates of COI in Nagongera, Walukuba, and Kihihi. (A) Estimates of COI by COIL, THE REAL McCOIL, and msp2. For THE

REAL McCOIL, the point estimates of COI shown are medians from the posterior distributions. The COI estimated by THE REAL McCOIL in

Nagongera and Walukuba were similar, and much higher than that in Kihihi (median COI = 5 [Nagongera], 4.5 [Walukuba], and 1 [Kihihi];

permutation test, p-values = 0.158 [Nagongera vs. Walukuba], 0.002 [Nagongera vs. Kihihi], 0.0006 [Walukuba vs. Kihihi]). Allele counts > 5

in msp2 typing were grouped into a single category due to difficulties in accurately distinguishing artifacts from true alleles at high

complexities of infection. The dashed red lines represent the medians of COI in three regions. (B) The spatial distribution of estimated COI

by THE REAL McCOIL in three regions. Small random noise was added to the location of samples in the map. COI of samples collected

from the West of Walukuba was higher than those from the East of Walukuba (medians = 5 [West] and 3 [East], p-value = 0.027).

doi:10.1371/journal.pcbi.1005348.g002
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reflect the dominance of particular clones in acute, high-density infections. No differences in

COI were observed between households with or without Insecticide Treated Nets (ITNs), or

between sampling years.

In Kihihi, elevation and COI were negatively associated (r = −0.259, p-value = 0.026), con-

sistent with the previously identified negative associations between elevation and mosquito

density, the incidence of malaria, and serological evidence of exposure [41]. Interestingly, the

unexpectedly high COI observed in Walukuba was largely driven by samples collected from

the West of this sub-county, (Fig 2B; medians = 5 [West] and 3 [East], p-value = 0.027). We

Fig 3. FWS. (A) Estimated COI by THE REAL McCOIL was negatively associated with FWS. (B) FWS in Kihihi

was higher than Nagongera and Walukuba. The FWS values shown were calculated using population allele

frequencies estimated from categorical method of THE REAL McCOIL.

doi:10.1371/journal.pcbi.1005348.g003
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have previously noted that mosquito densities in Walukuba are lower in the West, which is

closer to urban centers, as compared to the East, which is a fishing village comprised largely of

makeshift wooden housing [42]. One potential explanation for this seemingly paradoxical

finding—high COI in the lowest transmission part of the lowest transmission site–is that a

substantial proportion of these infections were imported from areas of higher transmission,

where parasite populations are more diverse and co-transmission of multiple genetically dis-

tinct parasites is more likely.

Finally, we compared allele frequencies from each of the three sites to determine whether

there was any evidence of population differentiation. We found little genetic differentiation

between sites measured based on our estimated allele frequencies (FST ranged from 0.004 to

0.04; Table C in S1 File and S3 Table), although Kihihi, which is somewhat geographically iso-

lated, had slightly higher FST with respect to the other two sites.

Discussion

Despite the availability of increasingly efficient genotyping technologies for molecular epide-

miology, the prevalence of polygenomic infections in malaria-endemic regions hinders the

estimation of basic population genetic parameters for Plasmodium falciparum. While COIL
can estimate COI using allele frequencies from monogenomic infections or external data,

direct estimation of allele frequencies from all samples is a preferable approach, particularly

when no relevant frequency data are available and sample size is sufficient to overcome sto-

chastic sampling error. THE REALMcCOIL accomplishes this by incorporating information

from polygenomic infections to simultaneously estimate COI and population allele frequen-

cies. We show through detailed simulations that our approach is robust to most model

assumptions and can readily handle missing data. In addition, THE REALMcCOIL can utilize

raw SNP genotyping data, allowing the method to be robust to errors in allele calling. Analysis

of genotyping data from Uganda show that THE REALMcCOIL is able to identify nuances in

field data that previous methods could not. In particular, compared withmsp2 genotyping or

applying COIL to SNP data, we identified much higher average COI overall and epidemiologi-

cally relevant variation between and within study sites.

Through a number of simulations, we show that results obtained from THE REALMcCOIL
are robust to assumptions that loci are independent and that the parasite population is homo-

geneous. As would be expected, a high degree of relatedness between parasites within an indi-

vidual host resulted in substantial downward bias in estimates of COI. This is not trivial, as

parasites in some epidemiological settings may be closely related within a host, e.g. due to co-

transmission [43]. Fortunately, we found that this bias follows a clear linear pattern and can

either be corrected if the level of relatedness is known, estimated directly from the data, or can

at least be given reasonable bounds (Text B in S1 File). While estimating the level of relatedness

may be challenging, enough information may be present in the data to do so in some cases, as

demonstrated by a recent paper which estimated this parameter from sequence-read data [44].

THE REALMcCOIL can also be applied to read-based SNP data, and in theory can be extended

to estimate relatedness. While we note that the most obvious model for measurement error in

sequence-read data is a binomial distribution (Text C in S1 File), a normal distribution as

applied in our current version offers a reasonable approximation and has computational

advantages.

Genotyping of one or a few highly polymorphic antigen markers, such asmsp1 andmsp2, is

currently the most common method for determining COI [45,46]. The use of capillary electro-

phoresis has improved resolution of alleles, but due to the creation of PCR artifacts it is still

difficult to accurately measure COI> 5 [38]. Deep sequencing of antigens such as csp is an

Concurrent estimation of the complexity of infection and allele frequency
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alternative approach [47,48]. However, with all of these approaches, immune selection on

these genes within individuals and in a population can bias estimates of COI in ways which are

difficult to predict [49,50]. Since loci under different types of selection can evolve indepen-

dently in the presence of recombination, the diversity and geographic distribution of loci

under immune selection may not be the same as observed among SNP loci. Both recombina-

tion rate and immune selection pressure will vary systematically with transmission intensity,

resulting in complex associations between different genetic markers. Therefore, multiple

genetic lineages defined by SNP panels may be associated with fewmsp2 alleles, or vice versa,

depending on the transmission setting and selective environment. In addition, if lineages

within the host are related, using multiple markers across the genome is more likely to detect

multiple lineages than using one region of the genome. FWS, based on the difference between

within-host and population heterozygosity, is a related metric used to quantify within-host

diversity [33]. While FWS is correlated with COI, the metric is conceptually different because it

is influenced by both the relative proportions of lineages within the host and population allele

frequencies [21,33,40]. estMOI [51] uses phasing information from sequence reads and the

number of unique allelic combinations to estimate COI but requires deep sequencing data and

can be biased by sequencing error. Some methods that use SNP data to estimate haplotype fre-

quencies also simultaneously estimate COI [52,53]. However, current haplotype-based meth-

ods can only consider a limited number of loci (~7) because the number of possible haplotypes

quickly expands with the number of loci. We expect that THE REALMcCOIL is better at esti-

mating COI than these methods because it can incorporate a much larger number of SNPs.

Moreover, COI estimated from THE REALMcCOIL could be used as a prior in tools estimat-

ing haplotype frequencies.

Application of THE REALMcCOIL to genotyping data from Uganda allowed us to calculate

allele frequencies and FST, which was not possible to do from the raw data or using COIL due

to the high proportion of heterozygous calls. THE REALMcCOIL also provided estimates of

COI for all sites, which demonstrated associations with epidemiologic factors not identified

usingmsp2 genotyping. Interestingly, we identified a high COI in the lowest transmission site,

potentially indicating importation of parasites from higher transmission areas. Although the

possibility remains that recent transmission reduction left complex, chronic infections in its

wake, explaining the high COI observed in Walukuba, the simplest explanation is that these

infections were imported from high transmission settings nearby. Additionally, our results

demonstrated that COI increased with age until age 7, and subsequently decreased, consistent

with studies based onmsp1 and/ormsp2 typing [54–59]. Previous studies reported inconsistent

associations between COI and parasite density for children > 2 years old (positive [55,58,60],

none [54,61], or negative [62]). We observed a negative association between COI and parasite

density in children aged 3–10 in Nagongera. Although higher parasite density may help detect

more strains within the host [63–65], the detection of minority strains may be more influenced

by relative proportions of the strains [39]. Individuals with high parasite densities may be rela-

tively immunologically naïve and have one or few lineages dominating the infection [66].

Lower parasite densities may be associated with partial immunity and parasite persistence, and

consequently the accumulation of parasite lineages [67–71]. Also, parasite lineages are more

likely to persist and accumulate in people with low parasite density because they are less likely

to have clinical symptoms [70,72] and be treated. The discrepancy between studies can be due

to different genetic markers, different transmission setting and immune levels, different con-

tribution of co-transmission vs. superinfections, or some combination of these factors.

In summary, THE REALMcCOIL facilitates population genetic analysis of SNP data from

polygenomic infections, which are common in many transmission settings and may predomi-

nate even in low transmission settings. Population allele frequency, which was previously

Concurrent estimation of the complexity of infection and allele frequency
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difficult to estimate if the majority of samples were polygenomic, can be estimated by THE
REALMcCOIL, allowing downstream analysis that requires frequencies, such as estimating

FST, FWS, and effective population size (Ne) [32,33,73]. THE REALMcCOIL is not only limited

to P. falciparum, but can also be applied to other parasite species with polygenomic infections

[74], including Plasmodium vivax [75]. Codes for THE REALMcCOIL are available on GitHub

(https://github.com/Greenhouse-Lab/THEREALMcCOIL).
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